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Abstract. Compressed sensing is famous for its compression performances 
over existing schemes in this field. Conventional researches aim at reaching the 
larger compression ratio at the encoder, with acceptable quality of reconstructed 
images at the decoder. This implies the error-free transmission between the 
encoder and the decoder. Unlike existing researches which look for 
compression performances, we apply compressed sensing to digital images for 
robust transmission in this paper. For transmitting compressed sensing signals 
over lossy channels, error propagation would be expected, and the ways to 
apply some means of protection for compressed sensing signals would be much 
required for guaranteed quality of reconstructed images. We propose to transmit 
compressed sensing signals over multiple independent channels for robust 
transmission. By introducing the correlations between the compressed sensing 
signals from different channels, induced errors from the lossy channels can be 
effectively alleviated. Simulation results have presented the reconstructed 
image qualities, which depict the effectiveness for the protection of compressed 
sensing signals. 
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1 Introduction 

Compressed sensing (CS) is one recently developed technique in lossy data 
compression researches and applications [1,2,3]. Lossy compression serves as an 
inevitable part in multimedia communications. With the widely use of smart phones 
or tablets, increasing numbers of multimedia contents are accumulated rapidly. These 
contents, mostly images, should be compressed at the encoder with international 
standards, such as JPEG or JPEG2000, in order to facilitate the use for different kinds 
of devices at the decoder. Then, compressed images can be stored, transmitted, and 
shared with the use of social networking services and wireless networks, which are 
commonly encountered in our daily lives. Thus, how to efficiently perform data 
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compression, in addition to the robust transmission of multimedia contents, would be 
much required for practical applications [4,5,6]. Unlike conventional compression 
techniques applied to international standards such as JPEG, compressed sensing 
presents different perspectives in lossy compression. Considering the practical 
scenarios of data transmission over channels, the robust transmission of compressed 
sensing signals leads to the new branch in researches with potential applications. 
In compressed sensing, it requires the sampling rate, which is far less than the Nyquist 
rate, with the capability of reconstructing the original signal for lossy compression. 
The major goal in compressed sensing researches would be the compression 
capability. Thus, how to effectively decode the extremely small amount of 
compressed signals, comparing to its counterparts in JPEG or JPEG2000, would be of 
great interest and it becomes the major challenge in researches [7,8]. In addition to 
looking for compression performances, we consider the robust transmission of 
compressed sensing signals. We transmit compressed signals over lossy channels to 
observe the effect caused by packet losses. To alleviate the quality degradation, we 
employ the transmission over multiple independent channels. For the better protection 
of compressed sensing signals, by use of adaptive sampling, improved quality of 
reconstructed image can be observed for the error controlled transmission. 
We briefly describe the fundamentals of block compressed sensing in Sec. 2. We 
present proposed method for transmitting compressed sensing signals over multiple 
lossy channels in Sec. 3. We demonstrate the simulation results in Sec. 4 to show the 
protection capability with our method.  Finally, we address the conclusions in Sec. 5. 

2 Fundamentals of Block Compressed Sensing 

In compressed sensing, based on the representations in [1,2,3], it is composed of the 
sparsity principle, and the incoherence principle. With block compressed sensing 
(BCS), we divide the original image X  into the B×B block kX , and then perform the 
operations below block by block. 

 For the sparsity principle, it implies the information rate in data 
compression. In compressive sampling, it can be represented with the 
proper basis  , 22 BBC  , and C means the complex number.  More 
specifically,   is the basis to reach sparsity with a k-sparse coefficient 
vector kX , 12 B

k CX , with the condition that 

kk Xf  . (1) 
Here, kf  denotes the reconstruction corresponding to the original. 

 For the incoherence principle, it extends the duality between time and 
frequency. The measurement basis  , 2BmC  , which acts like 
noiselet, is employed for sensing the signal kf , with the condition that 

kk fY  . (2) 
Here, kY  denotes the measurement vector. We note that Eq. (2) is an 
underdetermined system. 
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When an image is represented by a BCS scheme, it focuses on the local characteristics 
of the image. Hence, it might be inefficient to assign the same number of 
measurement dimension to each sampled vector corresponding to the different image 
block. Due to the local characteristics, one block in the image has significantly 
different sparsity from another. With adaptive sampling in BCS, the entropy of a 
block may be used to evaluate the information included. It is expected to reach the 
better reconstructed quality under error-free transmission with adaptive sampling. 

3 Transmission of CS Signals over Multiple Channels 

For the effective delivery of compressed sensing signals, and considering the robust 
transmission depicted in [9,10,11], we employ the use of transmission over multiple 
lossy channels, which are mutually independent, in this paper. Fig. 1 describes the 
block diagram of our system.  
 

 
(a) 

(b) 

 
(c) 

Fig. 1. Block diagrams for transmission with BCS and MDTC. 

At the beginning, in Fig. 1(a), the input image X  is divided into kX , then it is 
compressed with BCS, and compressed sensing signal is denoted by kY . For the ease 
of separating the compressed coefficients, we choose the odd-numbered indices to 
form k,1C , and the even-numbered ones to form k,2C . After that, we employ the 
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multiple description transform coding (MDTC) [9] to form the two descriptions of 
k,1D  and k,2D , with Eq. (3). 
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with the conditions that   1sin 2121 rr , leading to the determinant of one. Next, 

k,1D and k,2D  are transmitted over two independent lossy channels, with the loss 
probability of 1,ep  and 2,ep  for Channel 1 and Channel 2, respectively, as depicted in 
Fig. 1(b). Due to the induced errors, the two descriptions have become k,1D  and k,2D , 
respectively. At the decoder, as shown in Fig. 1(c), by employing [9], and by taking 
the inverse operations to Eq. (3) for reconstruction, we can obtain k,1C  and k,2C  from 
received descriptions. After the combination of the even- and odd-indexed 
components, we can obtain kY . Finally, with compressed sensing, we can compose 
the blocks kX  and obtain the reconstructed image X . 

4 Simulation Results 

With the proposed method, we choose the test image cameraman, with the size of 
128×128, for conducting simulations. For protection with MDTC, we set 121  rr , 

41
  , 

42
  , and choose the lossy probabilities for verifications. Regarding to 

adaptive sampling (AS) [7], the normalized DCT coefficient d   can be calculated by 

minmax

min
dd

ddd 
 . (4) 

Here, maxd  and mind  denote the maximal and minimal DCT coefficients in block kX . 
Then, the entropy in kX  can be calculated by 




 
1

0
log

d
ddk ppH . (5) 

Considering the practical implementation for adaptive sampling, we quantize the 
entropy values with the stepsize of 0.1, and reach the relationships in Fig. 2. Smaller 
entropy values imply the smoother blocks. 
 

Fig. 2. Relationships between the entropy and the number of blocks for BCS. 
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(a) BCS, under L1 

PSNR: 30.51dB SSIM: 0.45 
(b) BCS+AS, under L1 

PSNR: 32.60dB  SSIM: 0.74 

 
(c) BCS, under L2 

PSNR: 30.32dB SSIM: 0.50 
(d) BCS+AS, under L2 

PSNR: 31.44dB SSIM: 0.71 

Fig. 3. Simulations for BCS under L1 and L2 constraints for test image cameraman. 

In Fig. 3, we depict the results of error-free transmission of compressed sensing 
signals under L1 and L2 constraints. We choose to have 12 DCT coefficients for BCS 
in the 8×8 block on the average, leading to the rate of 0.1875. In Fig. 3(a) and Fig. 
3(b), we can easily see that adaptive sampling provides the better reconstruction; we 
can find the similar phenomena with their counterparts in Fig. 3(c) and Fig. 3(d).  
From the presentations in Fig. 3(a) and Fig. 3(c), it seems that the blocks with larger 
entropies present poorer subjectively. From the results in Fig. 3(b) and Fig. 3(d), it 
implies that by use of adaptive sampling, better reconstruction can be expected. Both 
the Peak Signal-to-Noise Ratio (PSNR) and the Structural SIMilarity index (SSIM) 
[12] are provided to measure the reconstructed image quality. From the four 
reconstructed images displayed in Fig. 3, under the error-free transmission condition, 
by use of adaptive sampling, both the PSNR and SSIM values are larger, which imply 
the better results. We choose BCS with AS in later simulations in Fig. 4 and Fig. 5. In 
addition, by use of the L1 or L2 constraint, the PSNR and SSIM values present 
differently. With BCS only, the L2 constraint presents better in Fig. 3(c). In contrast, 
with BCS and AS, the L1 constraint presents better in Fig. 3(b). 
In Fig. 4, we present the results of packet-loss transmission of compressed sensing 
signals under the L1 constraint. In order to test the error protection capability with 
multiple description transform coding, we choose to lose the even-numbered blocks, 
leading to the lossy rate of 50%.  The BCS signals can be protected with MDTC. 



ISIS2017 The 18th International Symposium on Advanced Intelligent Systems

14

 

 

 

 
(a) 

PSNR: 28.40dB SSIM: 0.14
(b)

PSNR: 30.20dB SSIM: 0.21 

Fig. 4. Simulations of reconstructed image qualities for BCS with adaptive sampling under the 
L1 constraint for lossy rate of 50%. (a) No protection applied. (b) Protection with MDTC. 

Under the L1 constraint for training, Fig. 4(a) presents the reconstructed image 
without protection, and Fig. 4(b) is the result with the protection of MDTC. We can 
easily tell the error protection capability with MDTC. When comparing the error 
protection result in Fig. 4(b) to the error-free result in Fig. 3(b), even though the 
protection with MDTC is applied, there is some room for the improvement of 
reconstructed quality. Note that we set the lossy rate to 50% to test the protection 
capability, which is hardly seen in real environments. Thus, for practical applications, 
we can expect the better reconstructed quality for smaller lossy rates. 
 

 
(a) 

PSNR: 30.18dB SSIM: 0.30
(b)

PSNR: 29.87dB SSIM: 0.37 

Fig. 5. Simulations of reconstructed image qualities for BCS with adaptive sampling under the 
L2 constraint for lossy rate of 50%. (a) No protection applied. (b) Protection with MDTC. 

In Fig. 5, it presents the training results under the L2 constraint. We can find similar 
phenomena that the reconstruction with MDTC protection in Fig. 5(b) presents better 
than the no protection case in Fig. 5(a). When comparing the error protection result in 
Fig. 5(b) to the error-free result in Fig. 3(d), there is still some room for the 
improvement under the lossy rate of 50%. Again, we expect to have the better 
reconstructed quality with the smaller lossy rates. Parameter selection for MDTC in 
Eq. (3) may help to reach the improvements. 
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5 Conclusions 

In this paper, we have employed the use of adaptive sampling for block compressed 
sensing, with the capability of robust transmission over multiple lossy channels. 
Multiple description transform coding, which introduces the correlations between 
neighboring chunks of block compressed sensing signals, may help to alleviate the 
data loss during transmission. Under the error-free transmission condition, we observe 
that by use of adaptive sampling, better reconstruction can be observed. Simulation 
results have demonstrated the protection with MDTC, and the alleviation of 
reconstructed quality, under severe lossy rate of 50%. Enhanced quality of 
reconstructed images can be expected with reasonable amount of lossy rates and the 
appropriate selection of parameters in MDTC. These can be explored for future 
studies with block compressed sensing. 
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